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Exploratory Common

Factor Analysis

In this chapter, we study the algebraic properties of exploratory factor anal-
ysis, an extremely popular data analytic technique that dates back to the
beginning of the 20th century. Exploratory factor analysis is the historical
precursor to confirmatory factor analysis and structural equation modeling.
Major books have been written about factor analysis, and focus of this chap-
ter is on the key algebraic properties of the factor analysis model, rather than
statistical or practical aspects of the method, which will be discussed in sub-
sequent chapters.

6.1 SPEARMAN’S SINGLE-FACTOR THEORY OF GENERAL

INTELLIGENCE

In 1904, Charles Spearman, a British psychologist, proposed his “single fac-
tor” theory of intelligence. Spearman sought to explain the relationships
among various measures of mental ability by means of a single (underlying)
ability, which he called general intelligence, or “g.” Spearman was an em-
piricist, and also mathematically talented, and so he became, in a sense, one
of the most important early “mathematical psychologists” by proposing a
sophisticated (and falsifiable) mathematical model. This model came to be
called the “common factor model.”

Spearman’s g was a “latent” variable, in the sense that there did not exist
independent operations and criteria for measuring it. Rather, it was defined
only in terms of the equations of the factor analysis model. Spearman pos-
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96 EXPLORATORY COMMON FACTOR ANALYSIS

tulated that g existed, even though it was only evidenced indirectly by the
battery of mental ability tests. The existence of a g could be tested, however,
because, if a g exists, and if, using linear regression, it is partialled out of the
observed variables, their partial covariances should all become zero. Suppose
the observed variables are gathered in a random vector x. Then, recalling
Equation 5.22 and realizing that the variance of the latent variable may be
arbitrarily set to 1, Spearman deduced that the possible existence of a g could
be verified by showing that a vector of regression weights b exists such that
Σxx − bb′ is diagonal.

Clearly, for a given p × p covariance matrix Σxx with p > 2, there may
not be any b such that Σ − bb′ is diagonal, and so Spearman’s model was
falsifiable. Spearman spent a number of years gathering data on mental ability
tests in the hope that it would verify his model. He hoped that a number of
benefits would ensue from fitting the common factor model (with a single
common factor) to a set of mental ability tests. First, by fitting the common
factor model and determining b, the factor loadings, he hoped to discover
which ability tests loaded on general intelligence. Second, by obtaining the
sample equivalent of ξ, the vector of observed intelligence factor scores, he
hoped to be able to obtain a pure measure of intelligence for each individual.
This intelligence score could, ultimately, be registered for each person, and
help determine that person’s position in the society. There were a number of
complications that sidetracked him.

1. There was the nasty issue of sampling variability. Even if the single
factor model held in the population, it would almost certainly not hold
in a sample of size N from that population. And, unfortunately, the
statistical theory to deal with this problem was not available.

2. Other researchers believed there was more than one fundamental factor
of mental ability. Soon, the common factor model was extended so that
it would allow more than one common factor. Garnett (1919) introduced
the notion of a multiple common factor model, which was subsequently
popularized by Thurstone. It is easy to show that, for any data set, a
factor model with m+1 factors will always fit a covariance matrix “bet-
ter” (in the primitive sense of leaving smaller residuals) than a model
with m factors, so long as the fit with m factors is not perfect. Hence,
there were many debates, based on prejudice as well as fact, about just
how many mental ability factors were needed to explain performance on
mental tests. Indeed, Sir Godfrey Thomson (Thomson, 1916) demon-
strated a rather striking phenomenon, i.e., that a single factor model
could be mimicked by a model with a very large number of factors.

3. E. B. Wilson, a well known Harvard statistician and mathematician,
discovered the problem of factor indetermiancy (see discussion below),
and a lively debate between Wilson, Spearman, and others ensued. The
debate lasted a decade, and, by the time it was over, Spearman’s golden
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moment of intellectual opportunity had passed, in the sense that others
(most notably L. L. Thurstone) had seized the momentum and dis-
tracted from the extraordinarily fundamental nature of his contribu-
tions.

Ultimately, of course, multiple factor analysis and related methods outgrew
the domain of mental ability research, and became widely employed in an
astonishing diversity of areas. Steiger (1994) identified 4 common, somewhat
related rationales underlying the factor model:

1. The Partial Correlation Rationale. This rationale, developed and cham-
pioned by Spearman, viewed common factors as the explanatory con-
cepts underlying a set of observed correlations. If these concepts were
to be measured, and the partial correlations among the observed vari-
ables were to drop to zero after the “common factors” were partialled
out, then the factors “explain the correlations among the observed vari-
ables” in the partial regression sense.

2. The Random Noise Rationale. In this view of factor analysis, the ob-
served variables represent our best attempt to measure some physical
process. Unfortunately, our measurements are noisy — there is ran-
dom noise polluting the measurement. A classic example might be EEG
responses to carefully timed standardized auditory signals, recorded at
several sensors. It may be that each sensor will pick up output from sev-
eral unified, consistent sources within the brain, but that these signals
will also include random, uncorrelated electrical noise. In this case, the
underlying sources are the “common factors” ξ underlying the measured
signals in x.

3. The True Score Rationale. In psychometrics, we commonly measure
attributes with devices that are assumed to be degraded by random
error. In particular, classical true score theory postulates measurements
that involve an underlying true score component, and a random error
component. If we measure the same ability with several items, this
turns out to be a special case of the common factor model. What we
are really interested in is the underlying true scores on the variables of
interest. The distinction between the observed scores on measures of
a trait, and the underlying trait itself, can be especially crucial when
we seek to establish linear regression relations among variables that
have varying amounts of error variance. Observed correlations can be
attenuated by unreliability, and so the regression relations among the
unreliable measures of a set of traits can mislead one about the relations
among the traits themselves. Because of this problem, it is common to
try to estimate regression relationships between the common factors
underlying a group of measures, rather than the measures themselves.
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4. The Data Reduction Rationale. In many situations, it is computationally
inconvenient to operate with a large number of measures. We seek to
reduce the number of measures, while simultaneously classifying them
into groups, and increasing the reliability of what they measure. This
data reduction rationale for factor analysis is a major use for factor
analytic technology. We factor analyze a group of items to discover
the major sources of variation underlying them, and to find out which
items are related to which sources. The resulting information allows
us to parcel items into groups, to gain a better understanding of the
structure underlying our items, and refine our measures of the sources
of variation.

Before we continue discussing the conceptual foundations of factor analysis,
I shall introduce a notation which will be specialized for our discussion of
common factor analysis and principal component analysis.

6.2 THE POPULATION COMMON FACTOR MODEL

Let x be a p×1 random vector of observed variables. Let ξ be an m×1 vector
of “common factors.” Let Σ be the variance-covariance matrix of the observed
variables, and let Ψ be the variance-covariance matrix of the common factors.
Define Λ to be a p×m matrix of least squares multiple regression weights for
predicting the variables in x from those in ξ. Further, assume that all random
variables are in deviation score form. Then the multiple common factor model
states that

x = Λξ + δ (6.1)

The residual variables in the p×1 random vector δ are referred to by a number
of names, depending on the historical and conceptual context. They have often
been called “specific factors,” “unique factors,” or “unique variables.” They
can be viewed conceptually in a number of ways. For example, they might be
viewed as that part of an observed test that is unique to that particular test.
Or, they might be viewed as random error or noise, superimposed on a group
of signals.

In the multiple common factor model, we stipulate that E(ξδ′) = 0, and it
then immediately follows from expected value theory that

Σ = E(xx′)
= E (

(Λξ + δ) (Λξ + δ)′
)

= E (
Λξξ′Λ′) + E (

Λξδ′) + E (
δξ′Λ′) + E (

δδ′)
= ΛE (ξξ′)Λ′ + ΛE (

ξδ′) + E (
δξ′)Λ′ + E (

δδ′)
= ΛΨΛ′ + Λ0 + 0′Λ′ + E (

δδ′)
= ΛΨΛ′ + E (

δδ′) (6.2)
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In the common factor model we usually stipulate that E(δδ′) = U2, where
U2 is a diagonal, positive definite matrix with diagonal entries greater than
zero and less than one. The resulting equation,

Σ = ΛΨΛ′ + U2, (6.3)

became known as the “Fundamental Theorem of Factor Analysis.” In the
“orthogonal common factor model,” the common factors are “orthogonal,”
or uncorrelated, and of unit variance, so that Ψ = I. It is also common to
restrict the common factors to have unit variances (i.e., variances of 1) in the
more general case, since these variances are essentially arbitrary.

A random vector ξ “fits the common factor model” if, when partialled from
x in the multiple regression system, it leaves a residual which has a diagonal,
positive definite variance-covariance matrix U2). It can be shown that a ξ (of
order m×1) which fits the m-factor common factor model exists if and only if
there exists an Λ such that Σ−ΛΛ′ = U2, a diagonal positive definite matrix.
Hence, we may “fit the common factor model” by finding whether there exists
a matrix Λ such that Σ−ΛΛ′ is of the desired form, or, alternatively, finding
whether there exists a diagonal matrix U2 with diagonal entries greater than
zero and less than one which, when subtracted from Σ, leaves a matrix which
is “Gramian and of rank m” (i.e., may be written as ΛΛ′ for some matrix Λ
of rank m). In practice, we do the latter.

If the observed variables are in standard score form, then Σ will be a corre-
lation matrix. In this case, recalling the results from the previous chapter, the
squared multiple correlation of the observed variables in x with the common
factors in ξ is given by the diagonal elements of the matrix ΛΨΛ′. These diag-
onal entries are frequently referred to as the “communalities” of the observed
variables.

6.3 FACTOR ANALYSIS IN THE SAMPLE

It is, a priori, extremely unlikely that the common factor model would fit
a population covariance matrix perfectly. And, even if it did, any sample
covariance matrix based on N independent observations taken from that pop-
ulation would almost certainly not fit a sample equivalent of the factor model
perfectly, due to sampling error. Consider a set of N observed scores on p
variables in the data matrix X. In this case, we specify

X = YΛ̂
′
+ Z + E (6.4)

with the appropriate side condition that all variables are in deviation score
form, that Y′Z = 0, and that Z′Z = Û

2
is diagonal and positive definite. In

this case the scores in Y are called “common factor scores.”
Once the sample estimate factor pattern Λ̂, factor correlation matrix Ψ̂,

and unique variance matrix Û
2

have been obtained, one may attempt to
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reproduce the sample covariance matrix S via the sample equivalent of the
“fundamental theorem of factor analysis.” (Equation 6.3) Specificially, one
obtains

Σ̂ = Λ̂Ψ̂Λ̂
′
+ Û

2
(6.5)

Of course, as mentioned above, it is extremely unlikely that, in practice,
one will have Σ̂ = S, and so the fit of the common factor model is assessed,
in practice, by examining the “residual covariance matrix” S − Σ̂. Large
elements in this matrix indicate that something has gone wrong in the fitting
of the factor model.

We will have much more to say about the residual covariance matrix in
subsequent sections dealing with the practical and statistical aspects of factor
analysis. Keep in mind that, since the exploratory factor model is often fit
to standardized data, the distinction between the sample covariance matrix S
and the sample correlation matrix R is eliminated, and so often the residual
covariance matrix is also a residual correlation matrix.

6.4 NON-UNIQUENESS PROBLEMS IN THE MULTIPLE COMMON

FACTOR MODEL

The unequivocal support that Spearman sought for his “theory of g” fueled his
enthusiasm for the common factor model. The model of Equation 6.1, along
with the appropriate side conditions, is sometimes referred to as the “factor
model at the random variable level.” If this model fits the data, then a simple
consequence Equation 6.3. This “fundamental theorem of factor analysis,”
allows one to test whether the m-factor model is tenable by examining whether
a diagonal positive definite U2 can be found so that Σ−U2 is Gramian and
of rank m. The early factor analysts, especially Spearman, found this notion
almost magical. You can test whether a (hopefully small) set of m variables
explaining the variation in xcould exist, without ever observing such variables
directly. Moreover, you could examine the linear regression relations between
x and the unobserved, hypothetical ξ by matrix factorization of Σ−U2. The
idea is indeed fascinating, and it is easy to understand why Spearman and
Thurstone found variants of it so compelling.

There were two elements of the factor model that, if identified, could pro-
vide substantial practical benefits. The “factor pattern,” Λ, by revealing
the regression relationships between the observed variables and the more fun-
damental factors that generate them, could provide information about the
structure of the variables being investigated. The sample equivalent of ξ
would provide scores on the factors. So, for example, if the factor model fit
a set of mental ability tests, one could determine a small set of underlying
mental abilities that explain a larger number of tests, and the ratings of the
test takers on these fundamental abilities. Indeed, Hart and Spearman (1912)
envisioned a virtual factor analytic utopia:
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Indeed, so many possibilities suggest themselves that it is difficult to
speak freely without seeming too extravagant . . . It seems even possible
to anticipate the day when there will be yearly official registration of
the “intellectual index,” as we will call it, of every child throughout the
kingdom . . . The present difficulties of picking out the abler children for
more advanced education, and the “mentally defective” children for less
advanced, would vanish in the solution of the more general problem of
adapting education to all . . . Citizens, instead of choosing their career at
almost blind hazard, will undertake just the professions really suited to
their capacities. One can even conceive the establishment of a minimum
index to qualify for parliamentary vote, and above all for the right to
have offspring. [Hart & Spearman, 1912, pp. 78–79]

Unfortunately, it turned out that there was a hierarchy of indeterminacy
problems associated with the factor analysis algebra presented above. Rather
than discuss the problems in the clear, systematic way that simple accu-
racy would seem to demand, authors committed to the common factor model
have generally omitted at least one, or described them in obscure, misleading
cliches. I describe them here, and urge the reader to compare my description
with treatments of the factor model found in many other texts and references.

1. Identification of U2. There may be more than one U2 that, when sub-
tracted from Σ, leaves it Gramian and of rank m. This fact, well known
to econometricians, and described with considerable clarity and care by
Anderson and Rubin (1956), is not described clearly in several factor
analysis texts. One reason for the confusion may be that necessary and
sufficient conditions for identification of U2 have never been established,
and there are a number of incorrect statements and theorems in the lit-
erature. There are some known conditions when U2 is not identified
(described by Anderson and Rubin). For example, U2 is never identi-
fied if either p = 2 and m = 1, or if p = 4 and m = 2. On the other hand,
if the number of variables is sufficiently large relative to the number of
factors so that (p − m)2 > (p + m), then U2 will almost certainly be
identified. However, if any column of Λ can be rotated into a position
where it has only 2 non-zero elements (see discussion of rotation below),
then U2 will not be identified. This means that the identification of U2

can never be determined simply by counting the number of observed
variables and the number of factors.

2. Rotational Indeterminacy of Λ. Even if U2 is identified, Λ will not be if
m > 1. Suppose, for example, we require m orthogonal factors. If such
a model fits, then infinitely many Λ matrices will satisfy Σ−U2 = ΛΛ′,
since ΛΛ′ = Λ1Λ1

′ so long as Λ1 = ΛT, for any orthogonal T. If one
allows correlated common factors, then even more solutions are possible.
Starting from a given Λ, such that x = Λξ + δ, we see that it is also
true that x = Λ1ξ1 + δ, where Λ1 = ΛT (for any nonsingular T) and
ξ1 = T−1ξ. Thurstone “solved” this very significant problem with his
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“simple structure criterion,” which was essentially a parsimony princi-
ple for choosing a Λ that made the resulting factors easy to interpret.
Thurstone concluded that the common factor model was

most appropriately applied when, for any given observed variable,
the model used only the smallest number of parameters (factors)
to account for the variance of the variable. Thus, if in a factor
analysis of n variables r common factors were obtained, Thurstone
deemed the factor solution ideal when each variable required fewer
than r factors to account for its common variance. By the same
token, when it came to interpreting the common factors by noting
the observed variables associated with each respective factor, par-
simony of interpretation could be obtained when each factor was
associated with only a few of the observed variables. [Mulaik, 1972,
p. 218]

Translated into an operational definition, simple structure meant that
a “good Λ” should satisfy the following (in an m-factor orthogonal so-
lution):

(a) Each row of Λ should have at least 1 zero.

(b) Each column of Λ should have at least m zeros.

(c) For every pair of columns of Λ, there should be several “nonmatch-
ing” zeros, i.e., zeros in different rows.

(d) When 4 or more factors are obtained, each pair of columns should
have a large proportion of corresponding zero entries.

In the early days of factor analysis, rotation of the initial Λ to a “best
simple structure” Λ1 = ΛT was an art, requiring careful calculation and
substantial patience. Development of “machine rotation” methods and
digital computers elevated factor analysis from the status of an esoteric
technique understood and practiced by a gifted elite, to a technique
accessible (for use and misuse) to virtually anyone. Perhaps lost in the
shuffle was the important question of why one would expect to find
“simple structure” in many variable systems.

3. Factor Indeterminacy. If the first two problems are overcome, a third
one remains. Specifically, the common and unique factors ξ and δ are
not uniquely defined, even if Λ and U2 are. To see this, suppose the
factors are orthogonal, and so Ψ = I. Then consider any ξ and δ
constructed via the formulas

ξ = Λ′Σ−1x + Ps (6.6)

and
δ = UΣ−1x − U−1ΛPs (6.7)
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where s is any arbitrary random vector satisfying

E(ss′) = I (6.8)

and
E(sx′) = 0 (6.9)

P is an arbitrary Gram-factor satisfying

PP′ = I − Λ′Σ−1Λ (6.10)

It is easy to verify, using matrix expected value algebra, that any ξ and δ
satisfying Equations 6.6–6.10 will fit the common factor model. Once Λ
is known, P can be constructed easily via matrix factorization methods.
s is a completely arbitrary random vector in the space orthogonal to
that occupied by x.

Equation 6.6 shows that common factors are not determinate from the
variables in the current analysis. There is an infinity of possible candi-
dates for ξ. Each has the same “determinate” component Λ′Σ−1x , but
different “arbitrary component” Ps. These candidates for ξ each have
the same covariance relationship with x, but possibly differ substantially
from each other.

Since dozens of papers have been written on the topic of factor inde-
terminacy, it is obviously difficult to summarize briefly. There are a
number of misconceptions about factor indeterminacy. For example,
though some writers seem to believe factor indeterminacy is a “sam-
pling” problem, and refer to it as the “factor score indeterminacy” prob-
lem, the above equations demonstrate it exists at the population level.
Moreover, it is not without practical implications. For historical re-
views of the factor indeterminacy issue, consult Steiger and Schönemann
(1978) and Steiger (1979). These papers press the view that, since fac-
tor analysis was, in its early days, a “methodology with a mission,”
(i.e., to promote the views of Spearman and Thurstone on the structure
of human abilities), the tendency was for its proponents to ignore its
indeterminacy problems. Certainly, there was a surprising absence of
discussion of factor indeterminacy in texts by Spearman (1927), Thur-
stone (1935, 1947), and Harman (1960, 1967).

Lovie and Lovie (1995) present some very interesting and valuable his-
torical details on the relationship between Charles Spearman and E. B.
Wilson. Wilson was a professor at Harvard in 1927 when Spearman
arrived on a speaking tour to promote his new book, “The Abilities of
Man.” Wilson had already developed some preliminary notions about
factor indeterminacy, but Spearman did not seem inclined to listen to
them. His initial interaction with Spearman so galvanized Wilson that
he spent much of his Christmas holiday working on a commentary on
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Spearman’s work. The position Lovie and Lovie (1995) take on the
events was that Spearman and Wilson were cooperative collaborators,
and that the historical account of Steiger and Schönemann (1978) was
overly partisan. Steiger (1996a) presses the view that Lovie and Lovie
(1995) offer a rather sugar-coated view of Spearman’s motivations (and
Wilson’s as well). The simple fact was, “The Abilities of Man” repre-
sented, for Spearman, the culmination of two decades of mathematical
and empirical work. Wilson’s discovery of factor indeterminacy came at
a time that, for Spearman, was, to say the least, inopportune.

For a modern discussion of factor indeterminacy, see the special issue
of Multivariate Behavioral Research devoted to a provocative “target”
paper by Maraun (1996c) and a series of responses by various authors,
and Maraun’s rebuttal and commentary (Maraun, 1996b, 1996a).

The following examples illustrate each of the 3 non-uniqueness problems
discussed above.

Example 6.1 (Unidentified U2) Consider the following correlation matrix:

R =

[
1.00 0.25
0.25 1.00

]

Suppose we wish to fit a single common factor model to these data. The model will
be of the form

R =

[
1 r
r 1

]
= λλ′ + U2

In this case, the model is so simple, we can solve it as a system of simultaneous
equations. Specifically, you can show that, for

λ =

[
λ1

λ2

]
,

any λ1 and λ2 satisfying
λ1λ2 = r,

and also satisfying the side conditions that

0 < λ2
i < 1, i = 1, 2

will yield an acceptable solution, with diagonal elements of U2 given by

u2
i = 1 − λ2

i

So, for example, two acceptable solutions, as you may verify, are

λ =

[
.5
.5

]
, U2 =

[
.75 0

0 .75

]

and

λ =

[
3/4
1/3

]
, U2 =

[
7/16 0

0 8/9

]
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Example 6.2 (Rotational Indeterminacy) Suppose you factor analyze 6
tests, 3 of which are supposed to be measures of verbal ability, and 3 of which are
supposed to be measures of mathematical ability. You factor analyze the data, and
are given an “unrotated factor pattern” that looks like the following.

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎣

.424 .424

.354 .354

.283 .283

.424 −.424

.354 −.354

.283 −.283

⎤
⎥⎥⎥⎥⎥⎥⎦

It looks like all 6 of the tests load on the first factor, which we might think of
as a “general intelligence factor,” while the 3 verbal tests (in the first 3 rows of the
factor pattern) load negatively on the second factor, while the 3 mathematical tests
load positively. It seems that the second factor is some kind of “mathematically and
not verbally inclined” factor!

Of course, there are, as we mentioned above, infinitely many other factor patterns
that fit the data as well as this one, i.e., produce the identical product ΛΛ′. Simply
postmultiply Λ by any 2× 2 orthogonal matrix T, for example, and you will obtain
an alternative Λ1 = ΛT.

The family of 2 × 2 orthogonal matrices is of the form

T =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]

where θ is the “angle of rotation.”
To see where the term “rotation” comes from, suppose we draw a plot of the 6

variables in “common factor space” by using the factors as our (orthogonal) axes,
and the factor loadings as coordinates. We obtain a picture as in Figure 6.1. Note
that, in this picture, you can read the factor loadings for any variable by simply
reading its coordinates on the two axes.

It is fairly easy to see in the picture that, if the Factors labeled “Factor I” and
“Factor II” were simply rotated −45 degrees (to the positions represented by the
dotted lines in the drawing), that the points representing the lower right cluster
would fall directly on the new Factor II ′ axis, and would have zero projections onto
the new Factor I ′ axis. Similarly, the points representing the upper right cluster
would now fall directly on the revised Factor I ′ axis, and would have zero projection
on the revised Factor II ′ axis.

To rotate the two factors −45 degrees, we recall that cos(45) = .7071, and
sin(45) = −.7071. Hence the rotation matrix is

T =

[
.7071 .7071

−.7071 .7071

]
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Factor I

Factor I ′

Factor II Factor II ′

x1
x2

x3

x4

x5

x6

1 0.5 0 0.5 1
1

0.5

0

0.5

1

Fig. 6.1 Rotation of Two Orthogonal Factors

You can verify that, when multiplied by the above T, the original Λ is transformed
into

Λ1 = ΛT =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0 0.6
0.0 0.5
0.0 0.4
0.6 0.0
0.5 0.0
0.4 0.0

⎤
⎥⎥⎥⎥⎥⎥⎦

This new factor pattern exhibits what Thurstone called “simple structure.” More-
over, it agrees with our theoretical expectations, in that the 3 verbal tests load on
one factor (evidently a “verbal factor”), and the 3 mathematical tests load on a
second factor, which evidently represents mathematical ability.

When there are only two common factors, it is possible, by plotting the loadings,
to “graphically rotate” the factors into simple structure, if such a rotation is possible.
The early factor analysts, without access to the powerful computers we take for
granted, made good use of this fact.

Example 6.3 (Factor Indeterminacy) Even if U2 is identified and Λ exhibit-
ing satisfactory simple structure is found, the factors themselves are not uniquely
determined, as the following example, taken from Steiger (1996b) shows. Suppose
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that the entire population of observations consists of

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.905 1.641 0.203 −1.401
−0.591 −0.598 −0.929 −0.192
−0.501 0.370 1.848 1.752
−0.488 −0.495 0.740 −0.402
−0.785 −1.101 −0.074 −0.794
−1.598 1.216 −0.404 −0.900

0.749 0.514 −1.703 1.084
−0.079 −0.343 −0.727 1.454

2.132 0.576 1.226 −0.001
0.255 −1.779 −0.182 −0.960

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above matrix may be conceptualized as the entire population of observations,
in the sense that each of the 10 row vectors has an equal probability of occurrence. So
the matrix represents the full set of outcomes in a discrete multivariate distribution
where each of the 10 outcomes has probability of occurrence of 1/10.

In that case, we have

Σ =

⎡
⎢⎢⎣

1.00 0.20 0.15 0.10
0.20 1.00 0.12 0.08
0.15 0.12 1.00 0.06
0.10 0.08 0.06 1.00

⎤
⎥⎥⎦ , Σ−1 =

⎡
⎢⎢⎣

1.066 −0.191 −0.132 −0.083
−0.191 1.054 −0.094 −0.060
−0.132 −0.094 1.034 −0.041
−0.083 −0.060 −0.041 1.016

⎤
⎥⎥⎦

Submitting the above Σ to any standard factor analysis program yields the following
solutions for Λ and U2:

λ =

⎡
⎢⎢⎣

0.5
0.4
0.3
0.2

⎤
⎥⎥⎦ , U2 =

⎡
⎢⎢⎣

0.75 0.00 0.00 0.00
0.00 0.84 0.00 0.00
0.00 0.00 0.91 0.00
0.00 0.00 0.00 0.96

⎤
⎥⎥⎦

In order to “construct” a set of common factor scores that agree with the factor
model and these data, we need, first of all, to find a component ps as described
in Equations 6.8–6.10. Since there is only one factor, p is a scalar and is equal to
the square root of 1 − λ′Σ−1λ. After some tedious calculations, we can determine
that p = 0.775. Hence, the indeterminate part of any common factor is a deviation
score vector ps such that X′s = 0, s′s/10 = 1, and p = 0.775. Infinitely many such
vectors exist. To produce one, simply take a vector of random numbers, convert it to
deviation score form, multiply it by the complementary projector I−X(X′X)−1X′

to create a vector orthogonal to X, rescale it to the appropriate length, and multiply
it by p.
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Two such candidates for the “indeterminate part” of the common factor are

ps1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.398
−0.284

0.314
1.949

−0.055
−0.794

0.608
−0.232
−0.636
−0.640

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ps2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.258
−0.384

0.509
−0.759

1.743
−0.515

0.755
−0.908
−0.261
−0.437

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The determinate part, also known as the “regression estimates” for the factor
scores, is computed directly as

XΣ−1λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.742
−0.616

0.491
−0.241
−0.743
−0.485

0.245
−0.092

1.261
−0.563

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Adding the determinate and indeterminate parts together, we construct two
rather different candidates for ξ. They are

ξ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.140
−0.900

0.176
1.708

−0.798
−1.278

0.853
−0.323

0.625
−1.203

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ξ2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−1

1
−1

1
−1

1
−1

1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

These candidates for ξ correlate only .399 with each other. It is possible to
construct valid candidates for ξ that correlate much less.

Imagine that each of the above ξi represent the intelligence scores of the indi-
viduals manifesting the associated test scores in Y. We discover that an individual
manifesting score pattern X′

4 =
[ −0.488 −0.495 0.740 −0.402

]
has an intel-

ligence score of 1.708 in one version of the factor, and an intelligence score of −1
in another version. It is this singular fact, first discovered by E. B. Wilson, that
seemed to compromise, irretrievably, Spearman’s high hopes for measuring g.
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Schönemann and Wang (1972) showed that, for orthogonal factors, assuming that
Σ is a correlation matrix (i.e., that the manifest variables are standardized), the
minimum correlation between equivalent factors are given by the diagonal elements
of the matrix 2Λ′Σ−1Λ − I.

6.5 ALTERNATIVE VIEWS OF FACTOR INDETERMINACY

Maraun (1996c) reviews two fundamentally different ways of thinking about
the phenomena demonstrated in Example 6.3. One approach, which he calls
the alternative solution position, emphasizes, as in the example, that different
solutions for a common factor exist, and have different implications.

The second major position discussed by Maraun (1996c), the posterior
moment position, takes a different viewpoint. It assumes that a unique set of
common factors ξ exists, and generated the data we observe via the common
factor model. It then investigates the posterior distribution of the common
factors, given the observed data. The conclusion is that, with equal prior
distributions (in the Bayesian sense), each of the candidates for ξ has equal
posterior probability.

Maraun compares the two positions carefully, and, drawing on his back-
ground in the philosophy of science, decisively favors the alternative solution
viewpoint. Maraun’s analysis is deep and detailed, and should be read in
its original form. Maraun (1996c) deals in considerable detail with the var-
ious metaphors surrounding the use of the common factor model, and, in
particular, with the notion of a latent variable. Maraun’s clarification of the
confusion between the metaphors of factor analysis, and the mathematics of
the method, is a model of clear writing, and should be required reading for
any serious student of factor analysis.

Besides the major alternative positions on factor indeterminacy, there have
been a number of responses to the problem within the factor analytic commu-
nity. These are discussed in detail by Steiger and Schönemann (1978), Steiger
(1990), Maraun (1996c). Two are particularly noteworthy:

1. Factors cannot be computed, they can only be estimated. Although fac-
tors could indeed be computed, they could not be computed uniquely
(because they are not unique). Rather than face this embarassing re-
ality, a number of proponents of factor analysis sought other ways of
thinking about the situation. One very confused line of thought led to
the derivation of numerous “factor score estimates.” For example, con-
sider any common factor, such as ξ1 in Example 6.3. From standard
regression algebra, the best least squares predictor of ξ1 from the vari-
ables in X is given by XΣ−1λ. This linear combination of the manifest
variables in X is called the “regression estimate” of the common factor
scores. It is easy to verify that, when the common factors are orthog-
onal, their regression estimates are not. This led to a variety of other
types of estimators, each with “optimal” properties.
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It can be shown that the regression estimates of the common factors are
the average of all possible true factors that can be computed. To un-
derstand the fallacy of computing factor score estimates, Steiger (1990)
proposed the following analogy. Suppose you have a model, called Model
A. It expresses obsrved variable X in terms of a single underlying latent
variable Y . The model is that

Y 2 − 100Y + X = 0

Now suppose X has a discrete distribution. Only two values ever occur.
They are 99 and 2100. In this case, what can be said about latent
variable Y . Suppose, for example, X is 99. Then there are two solutions
for Y . We can have either Y = 1 or Y = 99.
There are many precise analogies between the indeterminacy that affects
this model, and that which affects factor analysis. If all we know about
Y is that it is a random variable that satisfies the model, then there are
two satisfactory Y values. One could say that the “posterior distribution
of Y given X assigns probability .50 to the values 99 and 1. However, to
say that the “best regression estimate of Y ” is 50, the average of 99 and
1, is misleading. Statistical estimation occurs when a unique parameter
is approximated on the basis of a statistic, a function of a sample. In
this case, there is no need for statistical estimation, as all possible values
of the parameter are known. Suppose Y actually represents some kind
of percentage performance. We can say that, according to the model,
performance is either very bad or very good. To estimate it at 50% is
both unnecessary and misleading.

2. Factor indeterminacy vanishes in an infinite domain. In this modi-
fication of the common factor model, the p variables currently under
analysis are part of an infinite behavior domain, in which the common
factor model holds. If this is true, one can make indeterminacy as small
as one wishes by simply sampling enough additional tests. This view,
proposed by, among others, Williams (1978), was received enthusiasti-
cally by many proponents of factor analysis. Some obvious rejoinders
to this position are that (a) it is a new model, not a solution to the
problems with the factor model, (b) it is a model about data that have
never been observed, and so is never, at any point in time, testable.
Moreover, it is extremely unlikely, a priori to actually hold in any set
of variables.

Problems

6.1 Prove, using standard expected value algebra, that if ξ and δ satisfy
Equation 6.6–Equation 6.10, that they satisfy all the restrictions of the com-
mon factor model, i.e., they satisfy Equation 6.1 and all the orthogonality
conditions on ξ and δ are satisfied as well.
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6.2 Re-express Equation 6.1 in the form X = C′w by defining C′ and w as
the appropriate partitioned matrix forms.

6.3 Using the basic results on the weight matrix for least squares regres-
sion estimates, derive the formula for “regression estimates” of the common
factors in ξ, i.e., ξ̂ = Λ′Σ−1x. Assume that the common factors are orthog-
onal. (Hint. Simply translate the formula in Equation 5.19, considering the
observed variables in x to be the predictors, and the common factors in ξ to
be the criterion.)
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